نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..
الزوايا فيه اثنتان حادّتان واثنتان منفرجتان، وفي حال كانت إحدى هذه الزوايا قائمة يُصبح الشكل مربّعاً.
المعين عبارة عن مثلثين وكل مثلث متساوي الساقين، يشتركان في القاعدة.
عندما يكون القطر الأقصر مساويًا لطول أحد ضلعي المعين، فإن اثنين من المثلثات المتشكلة بين الأقطار سيكونا متطابقين.
قوانين حساب محيط المثلث يمكن حساب محيط أي مثلث حسب القانون الآتي: محيط المثلث = مجموع أطوال أضلاعه...
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
يختلف المعين عن المربع أيضًا read more بأن زواياه غير قائمةٍ، بينما زوايا المربع جميعها متساوية وقائمة، لذا يصبح المعين مربعًا عندما تكون زواياه قائمة، وبعبارةٍ أخرى يمكننا القول بأن: "كل مربعٍ هو معين ولكن كل معينٍ ليس مربعًا".
يعتبر المربع والمعين من الأشكال الرباعية الهندسية التي نراها كل يوم، فعلى سبيل المثال، نرى شكل المربع في الطاولات، وصناديق البيتزا، بينما نرى الألماس والطائرة الورقية تتخذ شكل المعين، وغالباً يعتبر المربع معينًا لأنه يطبق خصائص المعين، أما المعين فلا يعتبر مربع، وذلك بسبب اختلاف بعض الخصائص الأخرى بينهما.[١]
القُطران في المعين يشكّلان محوري تناظر للمعين، ونقطة التقاطع تشكّل مركز تناظر له.
و هو شكل رباعيّ الأضلاع، أضلاعه متساوية، والأضلاع المتقابلة متوازية، لكنّ زواياه غير متساوية، حيث إنّ كل زاويتين متقابلتين متساويتين فقط، بينما المربّع جميع زواياه قائمة، ومتساوية (تسعون درجة). عند تنصيف المعين بخطّ عموديّ وآخر أفقيّ، تنتج لدينا أربع مثلّثات: متساوية الساقين، ومتطابقة.
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
بالإمكان معرفة وتمييز المعين عن باقي أنواع الأشكال الهندسية من خلال معرفة وفحص بعض الخصائص والصفات منها:
تم عرض هذا المقال ١٧٠٬٧٨٠ مرة/مرات. المعين هو متوازي أضلاع أضلاعه الأربعة متساوية في الطول. يوجد ثلاث صيغ لحساب مساحة المعين ستجد شرحها في هذا المقال.
انتقل إلى المحتوى القائمة الرئيسية القائمة الرئيسية